Abstract

Electronic dipole moment and static polarizability functions for some diatomic molecules (H2, N2, O2, NO, OH, CO, CH, HF and HCl) that are important for combustion and atmospheric chemistry are calculated by using ab initio methods over a broad range of internuclear distances. Using the ab initio calculated data on the electric properties and potential energy functions, the effective values of dipole moment and static polarizability as well as the energy levels of these molecules in individual vibrational and rotational states until the dissociation threshold are determined. It is revealed that, for the ground electronic states of molecules under study, the excitation of molecule vibrations can affect the averaged dipole moment and static polarizability substantially, whereas the effect of excitation of the rotational states is less pronounced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.