Abstract
The presented study was designed to elucidate whether the cholinergic mechanisms control ovine antral slow waves in various physiological conditions, including feeding and various phases of migrating myoelectric complex (MMC). The investigations were carried out on six adult sheep of Polish Merino breed with seven bipolar electrodes surgically implanted onto the antral and small intestinal wall. In the course of chronic experiments, the myoelectric activity was recorded from these regions using the multichannel electroencephalograph. Experiments were performed on 48h fasted and non-fasted animals. During some of these experiments, sheep were fed with standard fodder. During control experiments 0.15M NaCl was slowly administered i.v. through the indwelling catheter and during other experiment, hexamethonium bromide (2.0 and 5.0mg/kg), atropine sulfate (0.02; 0.1; 0.5 and 1.5mg/kg) and pirenzepine dihydrochloride (0.02; 0.5 and 2.0mg/kg) were administered i.v. during phase 1-2a or 2b MMC. The drugs were also given in combinations. The recordings were analysed and the antral slow wave amplitudes and frequencies were calculated. Unlike the slow wave amplitude, either feeding or the anticholinergic drugs significantly increased slow wave frequency, especially when the given procedure was started during phase 2b MMC. The most pronounced effects were observed after hexamethonium given alone or in combinations. Thus, the cholinergic system modulates antral slow wave frequency in sheep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.