Abstract

When performing therapeutic drug monitoring (TDM) for flucloxacillin, it is advised to measure the unbound, not the total, flucloxacillin concentration. To be able to accurately quantify unbound flucloxacillin concentrations, a reliable analytical method is indispensable. To determine the influence of temperature and pH of the sample during ultrafiltration on the measured unbound fraction of flucloxacillin. We performed three different experiments. In a single laboratory experiment, we investigated the influence of ultrafiltration temperature (10°C, room temperature and 37°C) on the measured unbound fraction of flucloxacillin for three concentration levels. In a multiple laboratory experiment, the results of eight laboratories participating in an international quality control programme measuring unbound flucloxacillin concentrations were analysed. In the third experiment, patient samples were ultrafiltrated using four different conditions: (i) physiological pH and room temperature; (ii) unadjusted pH (pH 9 after freezing) and room temperature; (iii) physiological pH and 37°C and (iv) unadjusted pH and 37°C. For all experiments, measurement of samples that were ultrafiltrated at room temperature resulted in a substantially lower unbound fraction compared to samples that were ultrafiltrated at 37°C. Adjusting the pH to physiological pH only had a minimal impact on the measured unbound fraction. On the basis of these findings and considering the need for fast, simple and reproducible sample pretreatment for TDM purposes, we conclude that ultrafiltration of flucloxacillin should be performed at physiological temperature (37°C), but adjustment of pH does not seem to be necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.