Abstract

BackgroundDairy cows undergo dramatic changes in endocrine and metabolic status around parturition and in early lactation. Meeting the nutritional requirements of transition dairy cows is important for animal health, production and animal wellbeing. Dry cow feeding and managing play an essential role in this. The changes in metabolism of periparturient cows also lead to a rise in the production of oxidising agents, leading to oxidative stress. The relationship between dry cow diet composition and oxidative stress has received little research attention so far. In the present study, the influence of two different dry cow feedings (single diet with medium energy content over the whole dry period versus traditional two-phase diet with a low-energy “far-off” ration and a high energy “close-up” ration) on dry matter intake, energy intake and plasma protein peroxidative and antioxidative profile was investigated.ResultsThe examined parameters revealed a dynamic profile within the experimental period. Dry matter intake (DMI) did not differ between groups. However, there was a time and a group x time interaction effect: Group 1 (“one-phase”) had a very constant DMI with a slow and even decrease until calving. In Group 2 (“two-phase”), an initial increase in DMI two weeks antepartum (a.p.) was followed by a sharp drop at week 1 a.p.. The highest total antioxidant capacity and sulfhydryl residue concentration was noted at partus. In contrast, concentration of formylokinurenine and bityrosine bridges as representatives of protein peroxidation were lowest at parturition. The time course of formylokinurenine and bityrosine bridges showed parallels to the DMI. The contents of sulfhydryl groups, formylokinurenine and total antixoxidant capacity did not differ between groups. In contrast, concentration of bityrosine bridges was always higher in Group 2 compared with Group 1 and these differences were statistically significant at week 3 a.p., week 2 a.p., week 1 a.p. and at parturition.ConclusionThe results of our study suggest time-related changes of pro- and antioxidative plasma parameters. Different dry cow feeding affected antepartal DMI. Furthermore, DMI and diet compositions seemed to have an influence on plasma protein peroxidative profile and activity of antioxidative defence.

Highlights

  • Dairy cows undergo dramatic changes in endocrine and metabolic status around parturition and in early lactation

  • It illustrates the time pattern of dry matter intake (DMI), energy intake, bityrosine bridges (BIT), formylokinurenine (FK), total antioxidant capacity (TAC) and sulfhydryl residue (SH) (P-values of temporal patterns are mentioned in Additional file 1)

  • Dry matter- and energy intake Dry matter intake did not differ between groups, but a time and a group x time interaction effect were evident (Fig. 1 a)

Read more

Summary

Introduction

Dairy cows undergo dramatic changes in endocrine and metabolic status around parturition and in early lactation. The increase in energy demands required after calving for milk production in high-yielding dairy cows and the concomitant insufficient dry matter intake (DMI) lead to a negative energy balance in early lactation [1, 2]. In the “far-off” period, cows are fed a high-fibre, low-energy diet for the first weeks of the dry period. As dry matter intake drops markedly before calving, increase in energy content in the close-up period may improve production and health in early lactation [3, 4]. Dry matter intake remained more constant in the transition period, when high-straw, low energy diets were fed [7]. Due to the high metabolic demands and dysfunctional inflammatory responses, cows routinely experience substantial oxidative stress in early lactation [14, 15]. Indicators of protein peroxidation are sulfhydryl residue groups, N′-formylkinurenine and bityrosine

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.