Abstract

Metal/polymer/metal multi-layered materials have shown promising properties because of lightweight characteristics in automotive industries. Joining of these materials is difficult by conventional methods due to large difference in their physical and chemical properties. In the present work Friction Stir Spot Welding (FSSW) of AA5052-H32/HDPE/AA5052-H32 sandwich sheet is done. The objective is to analyse the influence of tool plunge depth on the joint behaviour. This is accomplished through joint characterization by evaluating mechanical performance, hook and flash formation, grain size, temperature measurement, and hardness distribution. Lap shear test, cross-tension test, peel test, and uni-axial tensile tests are conducted. A comparison between bimetallic and sandwich sheet has also been done. First, for joining sandwich sheets, the optimum plunge depth is 3.6 mm and greater. Adequate joint strength and extension at failure are obtained in this range. The joint strength does not depend on hook geometry, rather it depends on bond width and joint hardness. Second, though the joint strength of sandwich sheets is reduced as compared to bimetallic, the flash formed is minimised in sandwich sheets. The deformed material gets accommodated in the core layer region to reduce the flash formation. Finer grains are seen in sandwich sheet due to lesser peak temperature. Nugget pull out failure is commonly seen after testing and is independent of test method and the plunge depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.