Abstract

Current design regulations most often require use of limit equilibrium methods for the internal stability analyses of geosynthetic-reinforced soil (GRS) walls. However, the limit-equilibrium based approaches generally over-predict reinforcement loads for GRS walls when comparing with measured data from full-scale instrumented walls under working stress conditions. Wall toe resistance has an important influence on the performance of GRS walls but is ignored in limit equilibrium-based methods of design. This paper reports centrifuge modelling of GRS walls which have different toe restraint conditions but are otherwise identical. The GRS wall models prepared in this study isolate the influence of wall toe resistance on the performance of walls. Based on measured data from four centrifuge wall model tests, a reduction in wall toe resistance (by reducing the interface shear resistance at the base of the wall facing or removing the soil passive resistance in front of the wall toe or both) induces larger maximum facing deformation and reinforcement strain and load. The results also demonstrate that the wall models with typical toe restraint conditions are most likely operated under working stress conditions while those with poor toe restraint conditions may experience (or be close to reach) a state of limit equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.