Abstract

Abstract In this study, the influence of homogenisation heat treatment effect on Zn–3Mg alloy proposed for biodegradable bone implants was investigated. The alloy was developed via casting process from high purity raw materials and homogenised at 360 °C for 15 h followed by water quenching. Results revealed that the microstructure of as cast alloy was composed of dendritic structure of Zn-rich phase distributed in segregated pattern within Mg 2 Zn 11 eutectic phase. Exposure to the long duration heating of homogenisation apparently broke the dendrites and transformed them into connected precipitates within the alloy's matrix. Non-equilibrium thermal analysis revealed the formation of Mg 2 Zn 11 eutectic phase which nucleated at 367 °C and solidified completely at 354 °C. The eutectic coherency point occurred at 368 °C and 424 s when 30% of solid has precipitated during solidification. Homogenisation resulted into lowering the alloy's tensile strength from 104 MPa to 88 MPa but improving elongation at fracture from 2.3% to 8.8%. The homogenised Zn–3Mg alloy showed improved corrosion resistance (corrosion rate = 0.13 mmpy) compared to the as-cast one (corrosion rate = 0.21 mmpy). The mechanical property and corrosion behaviour of the homogenised alloy seem suitable for biodegradable implant applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.