Abstract

The dispersion of floaters, small organic particles lighter than water, on the free surface of an open turbulent channel flow subject to thermal stratification is studied by Direct Numerical Simulation (DNS) of turbulence and Lagrangian Particle Tracking (LPT). Constant heat flux is maintained at the free surface of the channel, the bottom wall is adiabatic and the turbulent flow is driven by a pressure gradient. This archetypal flow setup mimics an environmentally plausible situation which can be found in terrestrial water bodies. The free surface turbulence characteristic of such flows has a strong influence on the distribution of the floaters: the objective of this work is to study the effect of different regimes of stable stratification on the surface distribution of floaters. The distribution of the floaters can possibly influence the transfer of chemical species across the water/atmosphere interface. Our results show that the modification of turbulence due to the thermal stratification strongly influences the settling velocity of floaters in the bulk of the flow. At the surface, stratification effects are also observed on the clustering of the floaters: the filamentary patterns of floaters observed in unstratified turbulence are progressively lost as thermal stratification increases, and the distribution of the floaters remains roughly two-dimensional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.