Abstract
An approximate analysis of the problem of the transient free convective transfer flow of a Newtonian non-gray optically thin fluid past an isothermal vertical oscillating porous plate in the presence of chemical reaction and heat generation/absorption is studied. The dimensionless governing coupled linear partial differential equations are solved using a spectral relaxation method. The essence of the method of the solution-spectral relaxation method SRM is to linearize and decouple the original system of PDEs to form a sequence of independent linear equations that can be solved iteratively. The SRM approach applies the spectral collocation method and a finite different method independently in all underlying independent variables to obtain approximate solutions of the problem. Detailed computations on the influence of the chemical reaction parameter $A_{2}$ , the thermal radiation parameter R, the number Sc, the heat absorption/generation parameter $Q_{1}$ , and the Prandtl number on the flow velocity, temperature, and concentration distributions are illustrated graphically and in table format. It is observed that the flow velocity increases with the increase in either thermal radiation or thermal Grashof number. The temperature profile increases with the increase in either the thermal radiation parameter or the heat absorption/generation parameter. The rate of heat transfer decreases with the increase in the thermal radiation parameter, whereas it increases with increasing value of the heat generation/absorption parameter.
Highlights
The phenomenon of free convection arises in the fluid, when temperature changes cause density variation leading to buoyancy forces acting on the fluid element
In view of the significance of the radiation effect as well as the chemical reaction and heat generation effects, we propose in the present paper to investigate the effects of radiation on free convective heat and mass transfer past an isothermal vertical oscillating porous plate in the presence of a chemical reaction and heat generation, using a spectral relaxation method
The temperature and thermal boundary layer thickness are decreased corresponding to an increase in the values of the Prandtl number
Summary
The phenomenon of free convection arises in the fluid, when temperature changes cause density variation leading to buoyancy forces acting on the fluid element. Muthucumarswamy and Ganesan [ ] analyzed the effect of a chemical reaction on the unsteady flow past an impulsively started semi-infinite vertical plate, which is subject to uniform heat flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.