Abstract

T-joints are one of the most common welded joints used in the construction of offshore structures, including ships and platforms. In the present study, a sequentially coupled thermo-mechanical finite element model that considers temperature-dependent material properties, high temperature effects and a moving volumetric heat source was used to investigate the effect of welding sequence on the residual stresses and distortions in T-joint welds. The parameters of Goldak's double ellipsoidal heat source model were predicted using a neural network. The numerical models were successfully validated by the experimental tests. The results show that the welding sequences have significant effects on the residual stresses and distortions, both in the magnitude and distribution mode. The optimization of the welding sequences should be investigated numerically or experimentally before the construction welded structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.