Abstract
In this work, the dependence on the speckle size in the performance of a micro displacement sensor based on fiber specklegrams stored in a photorefractive BSO (Bi 12SiO 20) crystal is experimentally demonstrated. In our experimental setup, a plastic optical fiber (POF) was used to generate a subjective speckle pattern which was recorded in the crystal by using a four-wave mixing arrangement in transmission geometry. The speckle size was controlled by modifying the diameter of a pupil aperture adjacent to a lens producing the image of the speckle. The signal speckle beam was mixed into the crystal with two counter propagating pump beams to generate a fourth beam which is proportional to the conjugate of the original speckle beam. Real time fringe patterns were obtained at the output of the system by producing micro displacements of the fiber output end. Increases of the phase conjugation reflectivity and the visibility of the fringe patterns were appreciated when the speckle length was increased by decreasing the pupil aperture diameter. This behavior allowed recovering the autocorrelation functions of fringe patterns associated to micro displacements that initially led to decorrelation, and therefore, to improve the dynamic range of the metrological system. Until the best of our knowledge this is the first report about the influence of the speckle size on fiber specklegrams sensors recorded on photorefractive materials by four-wave mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.