Abstract
The notion of using support materials to achieve high dispersions of metal particles has been extended to the synthesis of carbon nanofibers from the catalyzed decomposition of ethylene. By using this approach it has been possible to generate nanofibers whose widths are dictated by the dimensions of the supported metal particles. In addition, the support may alter the state of the bulk and/or the surface of the catalyst particle through metal−support interactions, and the impact of this effect is manifested by modifications in the structural characteristics of the nanofiber deposits. In an attempt to gain a clearer insight into the influence of metal−support interaction on the growth characteristics of GNF, three metals, Fe, Ni, and Co that are known to be active catalysts for this process were impregnated onto silica, graphite, and well-characterized graphite nanofiber supports. Characterization of the solid carbon products was performed by a variety of approaches including high-resolution transmission electron microscopy (HRTEM), gas-phase analysis, and thermal-programmed oxidation (TPO). The goal of this study was to correlate each nanofiber product with the behavior of the specific metal/support precursor system. The advantages of using selected support materials to control the morphologies and sizes of nanofibers is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.