Abstract

Abstract In this work, the influence of the remnant magnetization, size distribution and content of soft magnetic reinforcement in micro-mechanical behavior of polymer matrix composites (Fe81Ga19/silicone) are evaluated. Melt spinning ribbons were pulverized in a planetary milling machine to act as composite particle reinforcement. The instrumented microindentation behavior (Young's modulus and Vickers micro-hardness), the pseudo-creep and relaxation phenomena as a function of the microstructure have been studied. In general, the micro-hardness, stiffness and elastic recovery of the studied composite materials increased with the filler content. Magnetic saturation did not change with the milling technique, and composite remnant magnetization increased with either contend or particle size. Additionally, the magnetization process improved the Vickers micro-hardness and Young's modulus of composites. Finally, pseudo-creep and stress relaxation behavior was also dependent on Fe81Ga19 content and size distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.