Abstract

In this contribution, the influence of the reaction injection moulding process on the thermomechanical material behaviour of aliphatic hexamethylene diisocyanate (HDI) based fast curing polyurethane is demonstrated. Uniaxial tensile tests, temperature-frequency dependent dynamic mechanical thermal analysis (DMTA) and Differential Scanning Calorimetry (DSC) are used to show the differences in properties for ten different sets of process parameters. The mould and resin components temperature, the mass flow during the filling process and the residence time during the reaction process of the polyurethane are varied in several stages. Further experiments to determine the molar mass of the molecular chain between two crosslinking points of the polyurethane are used to explain the process influences on the thermomechanical properties. Thus, a direct correlation between manufacturing and material properties is shown. In addition, the mutual effect of the different parameters and their overall influence on the material behaviour is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.