Abstract

Abstract In order to analyze the influence of the random parameters of the system on the nonlinear dynamic characteristics of the gear transmission system, considering the random perturbation of damping ratio, gear backlash, meshing frequency, meshing stiffness and the low frequency excitation caused by torque fluctuation, the random vibration equations of three-degree-of-freedom gear transmission system are established according to the Newton’s law. The motion differential equations are solved by the Runge–Kutta method. The effects of different random parameters such as load ratio, tooth frequency ratio, damping ratio, gear backlash and meshing stiffness on the dynamic response of the gear transmission system are analyzed in light and heavy loads and low and high speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.