Abstract
Press-coated tablets are a key technology to achieve delayed releases in chronotherapeutics. The drug release properties of this kind of tablets are linked to its unique core–shell structure. It is thus important to understand the influence of the process parameters on this structure. As different shapes can be used in the industry, we focused, in this study, on understanding the influence of punch shape on the final structure of a press-coated tablet. Experiments were performed using flat, bevel-edged and concave punches for the coating-compression to study the effect of the punch shape on the final properties of the core but also on the density distribution in the shell. The experiments were supported by numerical simulation to understand the mechanical effects in the powder compression process. It was found that the radial and axial stress state in the shell and in the core during compression is very dependent on the punch shape. The use of concave punches results in a more hydrostatic stress state compared to flat punches. The consequences on the structure are a more homogenous shell and less deformation of the core, which confirms that the tooling shape is a critical parameter to consider for the production of press-coated tablets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.