Abstract

A model of the temporomandibular joint (TMJ) was developed using the finite element method (FEM). The aim of the procedure is to identify reduced stresses and resultant displacements in the TMJ and to evaluate the transfer of contact loads for the three articulation states of the mandible that represent the activity of the joint. The study mapped the layered structure of the bio-bearing with different strength parameters of the tissues and synovial fluid. The model was loaded with the forces generated by the mandibular abduction muscles during chewing. Our method allowed for the assessment of the transfer of physiological loads within the temporomandibular joint. It enabled the functional analysis of the articular disc and articular surfaces when lubricating with the synovial fluid and showed compressive stimulation of bone structures. Under load transfer conditions, the maximum values of reduced stresses are located not in the immediate friction zone, but in the structures of the compact and spongy bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.