Abstract

Electron density of states (DOS) and recombination kinetics of bulk heterojunction solar cells consisting of a poly(3-hexylthiophene) (P3HT) donor and two fullerene acceptors, either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or 4,4′-dihexyloxydiphenylmethano[60]fullerene (DPM6), have been determined by means of impedance spectroscopy. The observed difference of 125 mV in the output open-circuit voltage is attributed to significant differences of the occupancy of the DOS in both fullerenes. Whereas DPM6 exhibits a full occupation of the electronic band, occupancy is restricted to the tail of the DOS in the case of PCBM-based devices, implying a higher rise of the Fermi level in the DPM6 fullerene. Carrier lifetime describes a negative exponential dependence on the open-circuit voltage, exhibiting values on the microsecond scale at 1 sun illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.