Abstract

The aim of the investigation was to study the influence of indenter tip geometry on the conventionally obtained indentation modulus of enamel by nanoindentation. Indentation tests on bovine enamel using three different diamond pyramidal indenters with half face angles 65.27°, 45°, and 35.26° were conducted to evaluate the indentation modulus using the Oliver–Pharr method [W.C. Oliver and G.M. Pharr,J. Mater. Res.7,1564 (1992)]. In addition, three different dehydration conditions were studied: wet under Hank's balanced salt solution, laboratory dried, and vacuum dehydrated. For the Berkovich indenter (65.27°) and 45° pyramidal indenters, there was only a small difference between indentation modulus values, whereas for the cube-corner indenter (35.26°) a ratio of 2.4 between laboratory dry and wet samples was found. A detailed evaluation, including indentation creep and recovery as well as pileup, resulted in a reduction of this latter ratio to 1.7. This still large difference was rationalized on the basis of the different deformation mechanisms generated by indenters of different face angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.