Abstract

Coal is used widely for domestic cooking in many regions of India, which contributes significantly to the particulate matter (PM < 2.5 μm) and CO levels in ambient and indoor air. Modeling and inventorization require the use of emission factors (EFs) for cookstoves, which are specific to fuel type and cookstove design. These are usually not available or are available for emissions under steady state combustion conditions following some protocols that are end-use-specific. In this study, two types of cookstoves are deployed, and PM < 2.5 μm and CO emissions are measured for a combustion cycle that includes an initial ignition stage, a flaming stage, and a smoldering stage. EFs are estimated for PM < 2.5 μm and CO for each of these stages of the combustion cycle and indicate a 5-9-fold increase for PM < 2.5 μm when emissions from the ignition stage are included. Elemental carbon and organic carbon analyses are presented for PM < 2.5 μm using two protocols, namely, IMPROVE_A and DIN-19539. The EFs developed for the complete combustion cycle may be used to better represent the impact of coal cookstoves on the ambient air quality and for a more realistic assessment of health effects for exposure in kitchens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.