Abstract

Minor changes in molecular structure affect the ability of racemic hydroxyoctadecanoic acids (nHSA, where n is the position of the hydroxyl group) to form molecular gels in a low polarity liquid, mineral oil, and influence their supramolecular structures. The activation energy and energy released during crystallization of 2HSA and 3HSA from solutions or sols are significantly lower than those of 6HSA, 8HSA, 10HSA, 12HSA, and 14HSA. The lower activation energies are associated with the ease of molecules of 2HSA or 3HSA to add to a face of a growing crystal lattice or the ease in which the critical nuclei are reached; the change in the activation energies appears to be related, in part, to the critical size of the crystallites, which, in turn, depends on the energy associated with the creation of the new phase and the interfacial free energy of the nucleated species with the liquid component. When the polar groups are close in proximity, the crystal packing arrangements are able to sequester these groups aw...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.