Abstract
We studied how the ratio of precursor titanium and boron powders influenced the combustion temperature and combustion velocity in the high-temperature self-propagating synthesis (SHS) mode, and the microstructure, phase composition, and mechanophysical properties of rods fabricated by SHS extrusion. The subject matters of the study were materials for which the as-batch phase compositions of products were TiB–(20–40) wt % Ti. The formation of boron solid solution in titanium was considered. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and mechanical measurements implied the texture of the prepared materials (TiB whiskers were aligned in the direction in which the external pressure was applied). In all of the composites studied, the conductivity was close to the conductivity of undoped titanium; the electrical resistance increased slightly in response to increasing boron weight fraction. The three-point bending strength of the material increased by a factor of 1.7 at most as the weight fraction of boron solid solution in titanium increased from 20 to 40 wt %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.