Abstract

Abstract It is well-known that the properties of cross-linked rubbers are strongly affected by the cross-link density. In this work it is shown that for thermoreversibly cross-linked elastomers, the type and length of the cross-linker also have a significant effect. A homologous series of diamine and bismaleimide cross-linkers was used to cross-link maleic-anhydride-grafted EPM irreversibly and furan-modified EPM thermoreversibly, respectively. Bismaleimide cross-linkers with a polarity close to that of EPM and a relatively low melting point have a better solubility in the rubber matrix, which results in higher chemical conversion and, thus, higher cross-link densities at the same molar amount of cross-linker. Samples cross-linked with different spacers (aromatic and aliphatic spacers of different lengths) were compared at the same cross-link density to interpret the effects on the material properties. The rigid character of the short aliphatic and the aromatic cross-linkers accounts for the observed increase in hardness, Young´s modulus and tensile strength with respect to the longer, more flexible aliphatic cross-linkers. In conclusion, the structure of the cross-linking agent can be considered as an alternative variable in tuning the rubber properties, especially for thermoreversibly cross-linked rubber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.