Abstract

Biofilms are consortia of microorganisms (sessile cells) that form on various surfaces including mucosal membranes or teeth. Bacterial biofilms cause many human infections such as chronic sinusitis, acne vulgaris, periodontal diseases, and chronic wounds. These infections are persistent as they show increased resistance to antibiotics and host defense system. Taurine chloramine (TauCl) and taurine bromamine (TauBr) are the physiological products of activated neutrophils, resulting from the reaction between taurine with hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. It has been shown in vitro that taurine haloamines exert antimicrobial properties against various pathogenic bacteria. Moreover, clinical studies have shown that both haloamines are effective in the local treatment of skin and mucose infections, including biofilm-related infections. Nevertheless, it has been not tested yet whether they can kill bacteria hidden in biofilm or disrupt biofilm structure. In this study we have investigated the capacity of TauCl and TauBr to inhibit in vitro the formation of P. aeruginosa biofilm. We have also tested their ability to destroy the mature biofilm. Our results suggest that TauBr is able to inhibit in vitro the formation of P. aeruginosa biofilm but cannot destroy the mature biofilm and effectively killed hidden bacteria. In further studies, the combined effect of TauBr and DNase, one of suggested biofilm inhibitors, was tested. Together, we conclude that TauBr is a better than TauCl candidate for local therapy of biofilm-related infections. However, a combined therapy, an application of TauBr together with other anti-biofilm agents (e.g., DNase), seems to be more promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.