Abstract

The photophysical properties of colloid semiconductor quantum dots (QDs) and QD-containing composites attract increasing interest. The possibility of tuning of the luminescence wavelength by varying the QD size, their broad absorption spectrum and feasibility of obtaining QD-based thin layers and composites offer great prospects for application in photonics and optoelectronics. Some emerging trends in the development of QD-based light-emitting diodes and solar cells require embedding of QDs into a polymer matrix. Although there is evidence that the photophysical characteristics of QDs in such systems depend on the type of their surface ligands, yet, there are only few studies on this subject. Here, the luminescence characteristics CdSe/ZnS/Cds/ZnS QDs coated with aliphatic or aromatic ligands, embedded in a polymethylmethacrylate (PMMA) matrix, have been studied. The quantum yield (QY) of the QD/PMMA composites containing QDs with aliphatic ligands has been found to be three times higher compared to those containing QDs with aromatic ligands. We assume that this effect is due to hole capture on TP aromatic π-orbital.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.