Abstract

Surface properties, especially albedo, and aspect are widely accepted as strong influences on the surface thermal response of building stone to insolation. However, the influence that adjacent areas of stone with very different surface properties may have on the thermal response of a patch of stonework, and the ways in which spatial variation in thermal characteristics might enhance stone decay has received relatively little attention. This paper examines the differential thermal response of granite used in construction that results from the presence of dark coloured micro-granular enclaves within a leucocratic host. Surface temperatures and temperature differences between enclaves exhibiting mico-spalling, enclaves with no spalling and the surrounding stone were measured for different aspects and seasons on a 20th century building in Madrid. These data were used to calculate a number of “indices” related to short-term temperature cycling and temperature gradients that have the theoretical capability of generating irreversible deformation of the stone. These indices suggest that micro-spalling of enclaves, compared to a lack of similar decay on the host-rock, is related to their differential thermal response to insolation, most importantly the lower albedo and thermal conductivity values of the enclaves. However, these factors are not sufficient on their own to trigger spalling, and breakdown was only observed where enclaves also experienced repeated, short-term surface temperature cycling caused by, for example, temporary shading by adjacent vegetation. These rapid temperature reversals are identified as a key contributory factor to the thermally driven decay observed on some of the enclaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.