Abstract

Scenario models of a moving subway train can help investigate the influence of different fire locations on smoke propagation characteristics in curved tunnels. To this end, this study adopts the three-dimensional Unsteady Reynolds Average Navier-Stokes equations method and the renormalization group k-ε two-equation turbulence model with buoyancy correction for numerical analysis. The motion of the train is replicated using the slip grid technique. The results indicate that when a fire breaks out on a moving train in tunnels, the piston wind leads the longitudinal movement of the smoke. If a fire erupts in the head or middle car of a moving train, the time of smoke backflow is delayed by 30 s or 17 s, respectively, compared to that for the tail car. The obtained results provide a theoretical basis for reasonably controlling the smoke flow in subway tunnels and reducing casualties in fire accidents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.