Abstract

The research is focused on determining the influence of structural and constructional parameters of rib knitted fabrics on the thermal properties of men's socks. Men's socks are made in three different pattern constructions of three types of basic yarns: bamboo, cotton and a cotton/polyester blend with the additional filament polyamide yarn and wrapped rubber wire for the so-called render socks. For all analyzed sock rib patterns, the most important structural parameters of the yarn and construction parameters of the knitted fabrics were determined. Thermal properties of socks such as the cool touch feeling property, thermal conductivity, heat retention coefficient and thermal resistance were determined by using Thermal Labo and Thermal Mannequin measuring devices. The structural and constructional parameters of knitted fabrics were shown to affect the investigated thermal properties of the socks, making them more or less insulating or heat conducting. Values of the warm-cold feeling parameter as well as thermal conductivity vary depending on the construction pattern, showing a decrease as the number of face loops is increased i.e. in the sequence R1:1> R3:1> R7:1. The ability to retain heat decreases in the opposite sequence R7:1 > R3:1 > R1:1. The highest values of heat retention were determined for R7:1 rib knitted socks by both methods. A regression equation has been established with thickness, loop length, mass per unit area and porosity as independent variables, and thermal resistance (determined by the Thermo Labo method) as the dependent variable. The loop length and mass per unit area were shown to contribute significantly to the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.