Abstract

Stoichiometric uranium dioxide (UO2) pellets were deformed by uniaxial compression creep tests at 1500 °C. Strains comprised between 3% and 11% were applied at strain rates ranging from ∼ 5 × 10−6 s−1 to 70 × 10−6 s−1 to deform pellets in the dislocational creep regime. An optimized protocol for Electron BackScattered Diffraction (EBSD) data acquisition and processing was applied to detect and quantify low and very low angle sub-boundaries disoriented down to 0.25° inside the prior UO2 grains. Three EBSD based parameters were calculated and are efficient to quantify the evolution of the deformed microstructure with the deformation conditions: the linear fraction of the sub-boundaries, the corresponding Geometrically Necessary Dislocations (GNDs) density and the resulting mean sub-grain size. The linear fraction of sub-boundaries (and their transcription in GNDs) increased significantly with the strain level and rate. New very low angle boundaries disoriented by less than 1° were continuously created whereas already existing sub-boundaries increased continuously their disorientation. This microstructural evolution can be described as a dynamic recovery mechanism by progressive increase of sub-boundaries disorientation angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.