Abstract

Here, static and dynamic (rotating) misalignments between the low-speed rotor (LSR) and the stator of axial flux magnetically geared machines are studied with the aid of 3-D finite element analysis (FEA). The influence of rotor/stator axis misalignments on machine performance in terms of cogging torque, air-gap flux density, and back-EMF is investigated with reference to the fully healthy condition. The results show that the LSR and HSR cogging torques are significantly affected by such misalignments due to distorted air-gap flux density. However, the amplitude and the harmonics of the back-EMF are only slightly changed. Furthermore, the influence of the misalignments on the machine torque performance is investigated. It is shown that the machine torque is significantly reduced when the LSR axis is misaligned with the axis of the stator. Thus, it is concluded that the torque performance of axial flux magnetically geared machines significantly deteriorates under static and dynamic axis misalignments. In addition, the two types of misalignments have similar effects on machine performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.