Abstract

Using the reduced density matrix formalism the time dependence of the exciton scattering in light-harvesting ring systems of purple bacteria is calculated. In contrast to the work of Kumble and Hochstrasser [J. Chem. Phys. 109 (1998) 855] static disorder (fluctuations of the site energies) as well as dynamic disorder (dissipation) is taken into account. For the description of dissipation we use Redfield theory in exciton eigenstates without secular approximation. This is shown to be equivalent to the Markovian limit of Čápek's theory in local states. Circular aggregates with 18 pigments are studied to model the B850 ring of bacteriochlorophyls within LH2 complexes. It can be demonstrated that the dissipation is important for the time-dependent anisotropy of the fluorescence. Smaller values of static disorder are sufficient to produce the same decay rates in the anisotropy in comparison with the results by Kumble and Hochstrasser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.