Abstract

Liquefaction is generally defined as the loss of contact between soil particles during shaking (earthquakes), and it usually occurs in saturated loose sandy soils where the timescale is insufficient for the water to drain from the pores, thus increasing the excess pore pressure, and thereby floating the sand particles. For regular structures with shallow foundations, liquefaction normally leads to loss of soil strength, which leads to settlement of foundations. On the other hand, bridges are usually supported with piles foundation, which introduces additional effects during liquefaction. Therefore, this paper examines the possible effects of liquefaction on the structural performance of bridges during earthquakes. Furthermore, the failure of Showa Bridge during the 1964 Nagata earthquake was also discussed and analyzed as an example of the catastrophic effects of liquefaction. The analysis shows that the most influential effect during liquefaction is the increase in the unsupported length of piles, which leads to several adverse effects such as increasing the lateral displacement, reduce the buckling capacity, increase the bending moment, and reduce the shaft capacity of the pile. Finally, recommendations regarding the design of pile supported bridges in seismic areas with liquefiable soils have also been suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.