Abstract

Most acute and chronic animal models of pain rely heavily on reflexive assays for evaluating levels of nociception, which involves removing the animal from its normal social environment. Here, we examine and characterize the influence of social interactions on inflammatory pain-evoked changes in movement in two different mouse strains. To produce inflammatory nociception, we injected CFA bilaterally into the hind paws of Balb/c and C3H mice and then recorded exploratory locomotor activity using an automated detector system to first evaluate the effects of social behavior on nociception. Secondly, we determined if carprofen administration altered the effects of social behavior on nociceptive-evoked movement. This methodology was expanded to create a novel thermal activity assay to objectively measure the effect of heat and cold on CFA-evoked animal movement in paired animals. Paired Balb/c and C3H mice exhibited significant hyper-locomotion that lasted for 3h post-injection in Balb/c, but only 1h post-injection in C3H. Single Balb/c mice only showed increased activity for 1h post-injection, while single C3H mice showed no increase. This CFA-induced increase in activity in paired animals was highly inversely correlated with mechanical allodynia as measured using standard Von Frey filaments. Carprofen administration completely blocked this CFA-induced hyperlocomotor activity. Both heat and cold induced a significant increase in locomotor activity in paired mice injected with CFA, while having no effect on activity in control mice injected with saline. The results presented here indicate that social interactions greatly influence inflammatory pain-induced changes in locomotor activity and indicate that the use of movement-based assays to evaluate nociception in paired mice may provide an alternative and more sensitive method to quantify nociception and characterize novel analgesic effects over time in the context of social interactions in rodent models of pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.