Abstract

In the present study, pure and Tin (Sn) doped ZnO (Sn–ZnO) nanostructures are grown using hydrothermal method. The effect of Sn doping on the physical properties of ZnO is extensively studied. Till 4 mol% of Sn doping, the dopant is completely dissolved in the host matrix and no secondary phases are formed as evident from XRD studies. The presence of the constituent elements of the host matrix (Zn,O) and dopant (Sn) is confirmed using Energy Dispersive X-ray Spectroscopy (EDX). From FESEM images, it is evident that the morphology of the grown structures changes from rods to flowers and flakes with doping. The microstructural analysis is carried out using HRTEM analysis. Various polar and non-polar optical modes present in the samples are analysed using Raman spectra. Two dominant emission bands around ∼ 391 nm, ∼ 470 nm are noticed from photoluminescence (PL) spectra. The potential of the Sn doped ZnO nanostructures in photocatalytic degradation of Rhodamine B is investigated and found that 1 mol% Sn doped ZnO exhibits superior photo catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.