Abstract

This study investigated the influence of the rotary axis of a 5-axis machine tool on the tool-workpiece compliance. The evaluation focused on the influence of the rotation angle and clamping condition of the B axis on the compliance variation. A method was determined to calculate the tool-workpiece compliance in an arbitrary direction from compliances measured using orthogonal triaxial excitations. Then, the tool-workpiece compliance of a 5-axis machine tool was evaluated and displayed using a color map. The compliance map showed that the magnitude of the compliance varied by up to 40% with changes in the B axis rotation angle and its clamping condition. A drastic change in the negative real part of the compliance was also detected in the compliance map. The results of an experimental modal analysis are used to discuss the cause of the compliance variation. The bending mode of the B axis is an important mode because the change in the bending direction due to B axis rotation has a great influence on the direction dependency of the compliance magnitude and the stability limit. A cutting experiment was conducted to verify the correspondence between the evaluated compliance and the vibrational amplitude in a real cutting process. The compliance variation in the compliance map corresponded to the amplitude variation of the vibration in an end milling process. The compliance map revealed that the vibration synchronized with the passing cycle of cutters was decreased by 80% by unclamping the B axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.