Abstract

In the present study, pure poly(dimethylsiloxane) (PDMS) polymer and PDMS-detonation nanodiamond (PDMS-DND) composite with 1wt.% of DND were irradiated under vacuum at room temperature with a 2MeV proton beam with fluences in the 1013–1015cm−2 range. Modification of the structures and properties of the pure polymer and the nanocomposite material were monitored as a function of proton fluence. Specifically, the vibrational dynamics of pure PDMS and PDMS-DND nanocomposites, both unirradiated and irradiated samples, were investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra of the PDMS and PDMS-DND composites exhibit an overall reduction in intensity of all vibrational bands of the irradiated samples. The changes in relative intensities of the characteristic vibrational bands as a function of irradiation fluence indicate that cleavage of the backbone (Si–O–Si) PDMS chains was most pronounced. Importantly, structural degradation of PDMS-DND composites takes place at an order of magnitude higher fluence than for pure PDMS, indicating the potential of using DND-based polymer composites for application in high radiation environments. The appearance of strong photoluminescence following irradiation was more pronounced for PDMS-DND composites as compared to pure PDMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.