Abstract
Ti6Al4V lattice structures were fabricated using selective laser melting with a wide range of processing parameters, namely laser power and scan speed, in order to study their effect on strut diameter and internal porosity morphology. Hence, identifying the optimum processing condition. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to investigate the influence of these parameters on the strut size and internal porosity within the struts. The results show that at low laser power conditions the strut size decreased with increasing the scan speed. At intermediate laser power (200 W) the strut size decreased until it reached 2400 mm/s, beyond which no pattern was observed. Fluctuations in strut size values were found at different scan speeds using high laser power (250 W, 300 W). The micrographs of the sectioned lattice structures showed various morphologies of the internal porosity, from which a process map was developed to pinpoint the various types of defects at the different processing conditions. Five zones were formed which are: gas porosity, keyholing, irregular defects, balling, and lack of fusion defects. SLM processing condition of 100 W–1600 mm/s was selected to be the best condition from the studied samples for producing the lattice structure with strut size closest to the design and with minimum internal porosity. Mechanical and microstructural analysis were performed for this condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.