Abstract

We report on the effect of different stimuli-responsive polymer shells on Fe@Au core-shell nanoparticles (NPs) with respect to thermoresponse as well as loading and release characteristics. The hybrid NP systems were investigated using a wide array of characterization techniques including dynamic light scattering, electrophoretic mobility, UV-visible spectroscopy, and scanning transmission electron microscopy. Three different polymeric shells were selected for loading and release of l-dopa: thiolated polyethylene glycol (PEG), poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAAM_AAc) microgel crosslinked with N,N′-methylenebis(acrylamide) (BIS), and finally concomitant PEG and PNIPAAM_AAc microgel (Fe@Au_PEG_Microgel). All three shells were found to exhibit high loading (∼10%) and encapsulation efficiencies up to 100 μg l-dopa/mg. Although the loading efficiencies are comparable for the three systems, Fe@Au_PEG_Microgel has the highest release (87%) at elevated temperature and acidic conditions. The attenuated release from the PEG-based systems can be attributed to stronger dipole-dipole interactions between the carboxyl group of PEG and the amino group of l-dopa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.