Abstract

Grating reflectors are a potential low-noise replacement for amorphous multilayer mirrors. We investigate the influence of polarization and refractive index on Brownian thermal noise of binary grating reflectors using Maxwell's stress tensor. Our results demonstrate that the refractive index of the grating material is a critical parameter for thermal noise in these structures. In contrast to multilayer mirrors, a low coating thickness does not necessarily lead to a low thermal noise amplitude for structures with low refractive index. We find that an improved noise performance of grating reflectors requires materials of refractive index ≳2.5. We present a factorized expression for the thermal noise of grating reflectors made of arbitrary materials by simply scaling the noise amplitude with the related material parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.