Abstract

We report on the thermally-induced precipitation of gold plasmonic nanoparticles in phosphate and silicate glasses, doped with Eu3+ and Er3+ ions. We studied the structure and optical properties of glasses under the heat treatment below and above glass transition temperature. The heat treatment of the glass at temperatures above transition is shown to facilitate the formation of plasmonic gold nanoparticles and decrease near-infrared luminescence intensity of the ions. The formation of pre-plasmonic gold nanoparticles under the low-temperature heat-treatment leads to the increase of luminescence intensity through the energy transfer process. We showed that nanophase separation in silicate glasses allows precise tuning of localized surface plasmon resonance spectral position of gold nanoparticles and paves the way for the development of new glass-based materials for photonics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.