Abstract
Interfacial adhesion between matrix and fiber plays a crucial role in controlling performance properties of composites. Carbon fibers have major constraint of chemical inertness and hence limited adhesion with the matrix. Surface treatment of fibers is the best solution of the problem. In this work, cold remote nitrogen oxygen plasma (CRNOP) was used for surface treatment. Twill weave carbon fabric (CF) (55–58 vol%) was used with and without plasma treatment with varying content of oxygen (0–1%) in nitrogen plasma to develop composites with Polyetherimide (PEI) matrix. The composites were developed by compression molding and assessed for mechanical and tribological (abrasive wear mode) properties. Improvement in tensile strength, flexural strength, and interlaminar shear strength (ILSS) was observed in composites due to treatment. Similarly, improvement in wear resistance (WR) and reduction in friction coefficient (μ) were observed in treated fabric composites when slid against silicon carbide (SiC) abrasive paper under varying loads. A correlation between wear resistance and tensile strength was slightly better than that in Lancaster–Ratner plot indicating that ultimate tensile strength (S) and elongation to break (e) were contributing to control the WR of the composites. It was concluded that enhanced adhesion of fibers with matrix was responsible for improvement in performance properties of composites, as evident from SEM, Fourier Transform Infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR) technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.