Abstract

Helical distortion of the core part of tokamak plasma, which is called a helical core or a long-lived mode, is investigated by means of three-dimensional magnetohydrodynamic equilibrium calculations. It is found that the magnitude of the helical distortion strongly depends on the shape of the plasma boundary for weakly reversed shear plasmas. The triangularity of the boundary enhances the amplitude of helical distortion. In addition, reversed D-shape plasmas also exhibit a helical core. It is also found that the triangularity lowers the critical β for the onset of a helical core; furthermore, the critical β vanishes when the triangularity exceeds a certain value. On the other hand, the influence of the ellipticity on the amplitude of helical distortion strongly depends on β. The ellipticity enhances the amplitude at high β, while it reduces the amplitude at low β.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.