Abstract

Electrochemical characterization has been carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors in an aqueous electrolytic solution. The rest potential of the activated carbon was proportional to the logarithm of the oxygen content or to the concentration of the acidic surface functional groups of the activated carbon. The result of triangular voltage-sweep cyclic voltammetry was the same as that of the residual current measurement. The oxygen content and concentration of the acidic surface groups of activated carbon influenced the electrochemical characteristics of the activated carbon. Under anodic polarization, gas evolution was observed at the electrode surface of activated carbon with high oxygen content at 0.8 V versus saturated calomel electrode ( SCE). Gas evolution was not observed at the electrode surface of activated carbon with low oxygen content even to 1.0 V versus SCE. Under cathodic polarization of activated carbon with high oxygen content, the peak was observed at approximately −0.2 V versus SCE, but there was no gas evolution at the electrode surface of the activated carbon. Bubbles were not observed at the electrode surface of activated carbon with low oxygen content at −0.5 V versus SCE. Electric double-layer capacitors were made from activated carbons used for electrochemical measurements; load-life tests have been carried out. Thickness and internal resistance of the capacitor composed of activated carbon with high oxygen content increased. The changes in thickness and internal resistance of the capacitor composed of activated carbon with low oxygen content were small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.