Abstract

Abstract Industrial experiments were performed on a down-fired pulverized-coal 300 MWe utility boiler with swirl burners. Gas temperature, concentrations of gas components (O 2 , CO, CO 2 and NO x ) in the burning region and carbon content in the fly ash were measured with outer secondary-air vane angles of 25°, 32.5° and 50°. Results indicate that with increasing vane angle, NO x emission and boiler efficiency decrease. Overall evaluation boiler efficiency and NO x emission, the vane angle of 32.5° is optimum. Using an IFA300 constant-temperature anemometer system, cold air experiments on a quarter-scaled burner model were also carried out to investigate the influence of various outer secondary-air vane angles on the flow characteristics in the burner nozzle region. No central recirculation zone appeared for vane angles of 25° and 32.5°. Most of the pulverized-coal was ignited in the external recirculation zone. For vane angles of 45° and 55°, a central recirculation zone could be observed, and air flow rigidity and axial velocities decreased rapidly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.