Abstract

This computational study explores the properties of non-uniform heat source/sink on the fluid transport properties of a chemically reacting nanofluid with two types of geometries saturated with porous medium. Simulations have been done to investigate the heat and mass transfer characteristics using Crank-Nicolson scheme. Influence of active parameters such as Hartman number, heat source and sinks, Brownian diffusion, higher order chemical reaction, Prandtl number and thermophoretic diffusivity are graphically presented. Tables demonstrate the significant impact of sundry parameters on skin-friction factor, heat and mass transfer rates. The achieved results expose that the heat source/sink parameter has high influences on the fluid flow and heat transfer characteristics. A decrease in average skin friction factor due to the magnetic field is more significant in the flow on a plate than that of cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.