Abstract

Ceramics with zero thermal expansion coefficients at room temperature (293K) were investigated. We found the thermal expansion coefficient was controlled by a compounding ratio of lithium aluminum silicate (LAS) and silicon carbide (SiC), which have negative and positive thermal expansion coefficients respectively. Although it was difficult to densify the composite of the LAS and SiC (LAS/SiC) in the sintering process, an addition of nitride improved the sinterability of the LAS/SiC. In order to examine the effect of the nitride additive, at first, the melting point of the LAS with silicon nitride (Si3N4) or aluminum nitride was measured by TG-DTA. The melting point of the LAS decreased with existence of nitride. It is believed that the densification of the LAS/SiC was promoted by the nitride, because the nitride causes the LAS/SiC to form a liquid phase, thereby decreasing the melting point. Next, the lattice constant of the LAS with Si3N4 was measured by XRD and it was verified that the a-axis was longer and the c-axis was shorter than those of the LAS without additive. It is supposed that this phenomenon is due to the substitution of nitrogen for oxygen in the LAS lattice, and the decrease of the melting point of the LAS with nitride seems to be influenced by this substitution of nitrogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.