Abstract

With loading of different shapes of nanoparticles, the solidification speed can be changed which was scrutinized in current work. Although the nanoparticles dispersion can decline the heat capacity, the conduction mode can be improved with such technique and changing the styles of nano-powders can alter the strength of conduction. The velocity terms were neglected in freezing, thus, the main equations include two equations with unsteady form for scalars of solid fraction and temperature. Grid adaption with position of ice front has been considered in simulations utilizing FEM. The upper sinusoidal and inner rectangular walls maintain cold temperature and freezing starts from these regions. Adding nanomaterial can expedite the process around 15.75% (for m = 4.8) and 29.8% (for m = 8.6). Also, utilizing particles with shapes of blade form can augment the freezing rate around 16.69%. The efficacy of m on freezing process rises around 4% with elevate of concentration of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.