Abstract

Platinum nanoparticles (NP-Pt) are noble metal nanoparticles with unique physiochemical properties that have recently elicited much interest in medical research. However, we still know little about their toxicity and influence on general health. We investigated effects of NP-Pt on the growth and development of the chicken embryo model with emphasis on brain tissue micro- and ultrastructure. The embryos were administered solutions of NP-Pt injected in ovo at concentrations from 1 to 20 μg/ml. The results demonstrate that NP-Pt did not affect the growth and development of the embryos; however, they induced apoptosis and decreased the number of proliferating cells in the brain tissue. These preliminary results indicate that properties of NP-Pt might be utilized in brain cancer therapy, but potential toxic side effects must be elucidated in extensive follow-up research.

Highlights

  • Platinum (Pt) is a noble metal with unique physiological and chemical properties widely used in chemistry, physics, biology, and medicine

  • Histological evaluation of brain morphology revealed pathological changes in the brain structure in embryos treated with platinum nanoparticles (NP-Pt), showing a moderate degradation of the cerebellar molecular layer, neuronal loss in the cerebellum cortex, and astrocytosis (Figure 2)

  • In the present work, we studied the effects of different concentrations of platinum nanoparticle hydrocolloids administered to chicken embryos on their growth and development as well as on the morphological and molecular status of the brain at the end of embryogenesis

Read more

Summary

Introduction

Platinum (Pt) is a noble metal with unique physiological and chemical properties widely used in chemistry, physics, biology, and medicine. The DNA damage is caused by Pt ions, which attach to N7 sites of DNA guanine bases and, after hydrolysis of Pt-Cl bonds, form adducts with the DNA double helix [2,3]. These properties of Pt are exploited in cancer therapy in the form of antineoplastic drugs to treat different types of cancer such as head, neck, brain [4], testicular, bladder, ovarian, or uterine cervix carcinomas [5]. Nanotechnology has introduced possibilities for using alternate forms of elements - nanoparticles. Nanoparticles have unique physiochemical features because of their small size (

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.