Abstract

The reducing of exhaust emissions is an essential issue for environmental organizations in the world. In the current research, emissions of SI engines were reduced by using Alumina (AL2O3) and titanium dioxide (TiO2) nanoparticles as additives to the high octane gasoline fuel used in the SI engine. 30 nm Alumina and titanium dioxide nanoparticles were mixed with high octane gasoline fuel at different concentrations. Different tests were carried out for the high-octane gasoline fuel before and after adding the nanoparticles, including thermal conductivity, viscosity, PH, density, morphology. Tests of the percentage of CO and O2 emissions were also performed for the exhaust gases of the SI engine. Results show an increase in thermal conductivity from 0.14 to 0.15 and 0.154 (W/m.k) respectively of AL2O3 and TiO2 nanofluid at 1% of volume concentration compared to the base fluid. Viscosity and density also showed an increase with increasing nanoparticle concentrations in the high-octane gasoline fuel. A decrease in the PH value of the high-octane gasoline fuel with an increase in nanoparticle concentrations was also observed. An improvement was noted in reducing carbon dioxide pollution emissions by alumina and titanium dioxide nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.