Abstract

Laser filaments in gases result from the nonlinear balance between optical Kerr self-focusing and plasma generation in the single ionization limit, i.e., the pulse intensity is supposed to remain moderate enough ( W cm−2) to apply photo-ionization theories valid for an averaged ion charge less than unity. However, no theory has attempted so far to consider how an ionization model allowing a priori multiple-charged states could impact the standard filamentation scenario. Here, we discuss a multiple photo-ionization scheme that relies on probabilities assuming successive single-electron ionizations. We numerically show that a multiple ionization scheme can increase the clamping intensity, the peak electron density and supercontinuum generation in gases with high binding energy, e.g., helium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.